

Enseñando Termodinámica Aplicada con CoolProp

J.C. Domínguez, R. Miranda, D. Lorenzo, V. Rigual, M.M. Villar-Chavero, M.V. Alonso, M. Oliet

Departamento de Ingeniería Química y de Materiales

Qué es CoolProp

CoolProp es una librería (paquete informático) de propiedades termodinámicas. Algunas de las ventajas por las que lo elegimos son:

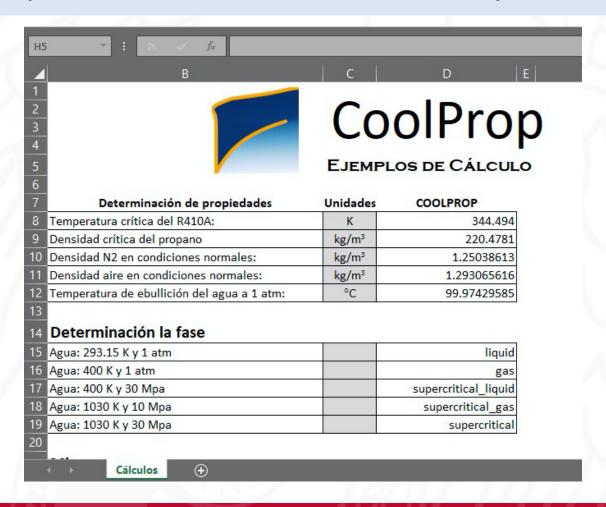
- Es multiplataforma:
 - Sistemas operativos:

Permite el uso de Bases de datos: NIST

Datos bibliográficos: EOS.

Descripción

Ámbito de aplicación


Asignatura: Termodinámica Aplicada (2º Curso Grado IQ)

Determinación de propiedades

Cálculo de propiedades termodinámicas de forma sencilla empleando Excel

Elaboración de diagramas termodinámicos

Diagrama T-s para el aire (programado en Python)

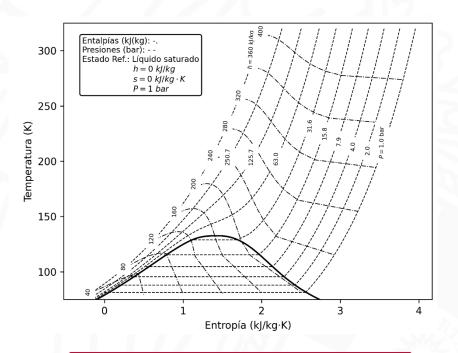
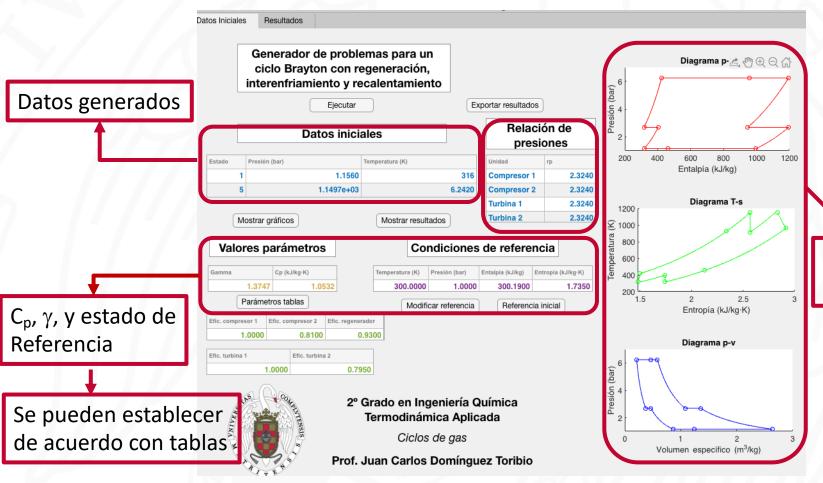


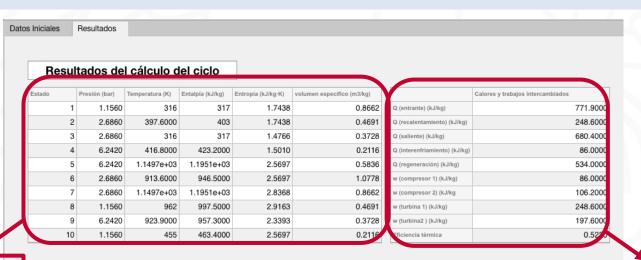
Diagrama de Hausen para el aire


```
🐍 Constructor Diagrama Hausen Aire.ov
       from CoolProp.CoolProp import PropsSI
       import matplotlib.pyplot as plt
       from labellines import labelLine
       def LineaLS(Tmin):
           Tc=PropsSI('Tcrit', 'Air') # En K
           Temperaturas=np.linspace(Tmin, Tc, 200, endpoint=True)
           Entropias=np.ones(200)
           for i in range(200):
               Entropias[i]=PropsSI('S', 'T', Temperaturas[i], 'Q', 0, 'Air')/1000 # en kJ/kg K
           return Temperaturas, Entropias
       def LineaVS(Tmin):
           Tc=PropsSI('Tcrit', 'Air') # En K
           Temperaturas=np.linspace(Tmin, Tc, 200, endpoint=True)
           Entropias=np.ones(200)
           for i in range(200):
               Entropias[i]=PropsSI('S', 'T', Temperaturas[i], 'Q', 1, 'Air')/1000 # en kJ/kg·K
           Temperaturas=np.append(Temperaturas,Tc)
           Entropias=np.append(Entropias, PropsSI('S', 'T', Tc, 'Q', 0, 'Air')/1000) # en kJ/kg·K
           return Temperaturas, Entropias
```

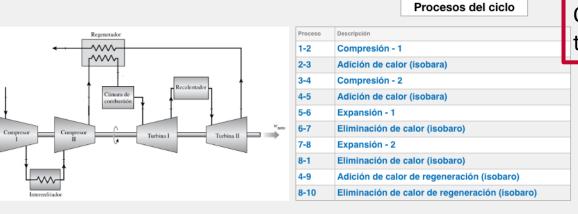
Código empleado en Python

Estudio de ciclos termodinámicos

Generador de datos para un ciclo Brayton.



Diagramas: P-h; T-s y P-v



Estudio de ciclos termodinámicos

Generador de datos para un ciclo Brayton.

Valores prop. en Cada estado

Q, W y eficiencia térmica del ciclo

Agradecimientos

Vicerrectorado de Calidad Universidad Complutense de Madrid

Los autores desean agradecer al Vicerrectorado de Calidad de la UCM el apoyo recibido para el desarrollo de este trabajo a través del Proyecto de Innovación nº 215 (convocatoria 2019).

¡Gracias por su atención!

Departamento de Ingeniería Química y de Materiales