Bringing frequency response analysis closer to Chemical Engineering

Miguel Mauricio-Iglesias, Jakob K. Huusom, Krist V. Gernaey

CRETUS Institute

Departament of Chemical Engineering

Universidade de Santiago de Compostela

Departament of Chemical & Biochemical Engineering
Technical University of Denmark

What should Chemical Engineering undergraduates remember about process control?

- The need of automatic control
- The elements of a controller, highlighting sensors

• The nature of feedback and how to implement it

 Trade-offs between performance and stability. The limitations imposed by time delays and noise

What should Chemical Engineering undergraduates remember about process control?

- The need of automatic control
- The elements of a controller, highlighting sensors

• The nature of feedback and how to implement it

 Trade-offs between performance and stability. The limitations imposed by time delays and noise

We believe that frequency response analysis is the best way to understand performance vs stability

In particular related to time-delays, which limit the performance of controllers

But frequency response analysis is difficult!!

We believe that frequency response analysis is the best way to understand performance vs stability

In particular related to time-delays, which limit the performance of controllers

But frequency response analysis is difficult!!

Not really. Just unfamiliar, partly because it is taught as for students of automatics/electrical engineering

We tried to make examples that would help understanding the results of frequency response analysis

Understanding how the process gain changes with input frequency: a colour changing stirred tank

In particular related to time-delays, which limit the performance of controllers

Quasi-sinusoidal addition of base and acid

$$\frac{dC}{ct} = k_{mix}(C(t) - C_{\infty})$$

Gentle stirring to mix as slowly as possible

Understanding how the process gain changes with input frequency: a colour changing stirred tank

The gain of the process is the colour change. It decreases when we increase the frequency of the input

Understanding the meaning of the phase shift: it is basically a delay

The temperature change along the year is delayed at lower depths

If the delay reaches -180°, the signal is inverted (upside-down)

How are the gain, the phase shift and the performance related?

The gain tends to decrease with frequency

The phase shift tends to become more negative with frequency.

How are the gain, the phase shift and the performance related?

The gain tends to decrease with frequency

The phase shift tends to become more negative with frequency.

When the phase reaches -180° the gain must be low

TAKE HOME MESSAGE: Frequency response analysis can help understanding many process control ideas

miguel.mauricio@usc.es

CRETUS Institute

Departament of Chemical Engineering
Universidade de Santiago de Compostela

@ MiguelMauricio

kvg@kt.dtu.dk

Departament of Chemical & Biochemical Engineering
Technical University of Denmark

@kristgernaey

